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Success of AI before 2020



Success of AI before 2020



Success of AI before 2020

Excel at (only) one thing!





Multiple tasks and data modalities arise today

8



Fast adaptation to new users

Multiple metrics arise in machine learning today

9
Image from Internet

Subject to privacy regulation

Data and model bias Resource constraints

Metric 1

Metric 2

Metric 3

Metric 4

Metric 5Metric 6

Desiderata of multi-objective AI



Empirical risk minimization (ERM)

min
𝑥

loss/error (model x, trainig data)

Conventional machine learning (ML) pipeline

Data collection

Model training

Model deployment

"Past" era of single-objective learning

10
Image from Internet



11

Tasks, data, metrics

all can be modeled as an objective…

min
𝑥

loss (model x, trainig data, metric, tasks)
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Tackling multiple tasks, data, metrics

via single-objective learning …

min
𝑥

loss (model x, )

min
𝑥

loss (model x, )

min
𝑥

loss (model x, )

+

+

Simple but may cause…

e.g., increase 𝑥(1), increase acc 0.01

e.g., increase 𝑥(1), decrease fair 20%

e.g., decrease 𝑥(1), increase acc 0.1

unit mismatch or competition

versus

versus
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Tackling multiple tasks, data, metrics

via sequential learning …

min
𝑥

loss (model x, )

min
𝑥

loss (model x, )

min
𝑥

loss (model x, )

No feedback, may cause catastrophic forgetting
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Our focus – A tale of two methods

Bi-/multi-level training

Pre-define the preferences/orders

Multi-objective training

Pre-define or let the algorithm

determine preferences

s.t. min objective 3

min (objective 1, objective 2, objective 3)

Mitigate unit mismatch or competition,

compared with single-objective learning 

min objective 1

s.t. min objective 2

Allow feedback loops, compared

with sequential learning



Empirical risk minimization

min
𝑥

loss (model x, trainig data)

Data collection

New model trainingModel deployment

Opportunity lies in new model training steps
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Bi-level training

min
𝑥

 second objective (x, 𝑦∗(𝑥))

𝑦∗(𝑥) = argmin
𝑦

first objective (x, y)

Multi-objective training

min
𝑥

 [obj 1 (x), obj 2 (x), … obj M (x)]

ℓ1

ℓ2

Hypothesis ℋ

Pareto front
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Problems tackled by bilevel model training?

Learning from imbalanced data

Learning to fast adapt

Learning to fast optimize

Neural architecture search

Adversarial training

Model pruning

…

Learning from imbalanced data

Learning to fast adapt

Learning to fast optimize

Neural architecture search

Adversarial training

Model pruning

…

Bi-level training

min
𝑥

 second objective (x, 𝑦∗(𝑥))

𝑦∗(𝑥) = argmin
𝑦

first objective (x, y)



Li, Zhang, Thrampoulidis, Chen, and Oymak. "Autobalance: Optimized loss functions for imbalanced data." NeurIPS 2021

Bilevel optimization for learning from non-i.i.d. data
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Workers with non-i.i.d. 

data (class imbalance) 
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min
𝑥

 val data (𝑦∗(𝑥)) s. t. 𝑦∗(𝑥) = argmin
𝑦

train data (x, y)

Upper level optimizes 

class weights x

Lower-level for x-fixed 

model retraining y
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Bilevel optimization for meta learning

18

min
𝑥

 task validation data (𝑦∗(𝑥)) s. t. 𝑦∗(𝑥) = argmin
𝑦

train data (x, y)

Upper level optimizes 

the meta model x

Lower-level for x-fixed 

model fine-tuning y

Meta-train data

…

Validation dataTraining data

Task 1

Task 𝑇

C. Finn, P. Abbeel, and S. Levine, "Model-agnostic meta-learning for fast adaptation of deep networks," Proc. of ICML 2017

Downstream task

Pre-trained model

Fine-tuning

Fine-tuning



Bilevel optimization can be defined as

What is bilevel optimization? A gentle introduction

Upper-level variable 

Lower-level variable 

▪ Difficulty: upper- and lower-level coupling through solution set

▪ Merits: capture learning hierarchy across multiple objectives

19
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Relation with other popular frameworks

▪ Bilevel versus min-max optimization

Image from Internet

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models resistant to adversarial attacks,” ICLR 2018

More general and

flexible models!
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In general, yes, but ML problems admit efficient solvers!

Despite its flexibility, is it too slow to solve?



A brief history of bilevel optimization

22

1980s

Single-level 

reformulation of 

bilevel optimization

1952

Stackelberg’s game

1973

Original bilevel 

formulation

L. Vicente and P. Calamai, ``Bilevel and multilevel programming: A bibliography review,” Journal of Global optimization, vol. 5, no. 3, pp.291-306, 1994

Hardness 

results

Early 1990s

Bilevel optimization for ML

Late 2000s After 2020: Finite-time convergence;

generalization; new AI/ML applications

[Kunapuli et al, 08], [Pedregosa, 16], 

[Sabach et al, 17], [Franceschi et al, 18],

[Ghadimi et al, 18], [Hong et al, 20], [Liu

et al, 20], [Ji et al, 21] [Guo et al, 21]…

Z-Q. Luo, J-S. Pang, and D. Ralph, ``Mathematical programs with equilibrium constraints.” Cambridge University Press, 1996.

Late 1990s



Recent surge of interests
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Papers on Google Scholar under keyword “bilevel optimization”
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Problems tackled by multi-objective training?

Learning from multiple tasks

Multilingual translation

Multi-objective alignment

Multi-domain classification

Multi-agent reinforcement learning 

…

Learning from multiple tasks

Multilingual translation

Multi-objective alignment

Multi-domain classification

Multi-agent reinforcement learning 

…

24

Multi-objective training

min
𝑥

 [obj1 (x), obj2 (x), … objM (x)]



Y. Cheng, Y. Zhang, M. Johnson, W. Macherey, and A. Bapna, “Mu2slam: Multitask, multilingual speech and language models.” 

In International Conference on Machine Learning, pp. 5504–5520, 2023

Multi-objective optimization for multilingual translation

25

Universal language translator over 7000 languages 

Speech Model Transcripts 

min
𝑥

 [Laguage 1 (𝑥); Laguage 2 (𝑥); … ; Laguage 7000 (𝑥)]



Multi-objective optimization for multi-task robotics

min
𝑥

 [button press reward (𝑥); door open reward (𝑥); … ; window close reward (𝑥)]

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey Levine, “Meta-world: A benchmark and evaluation 

for multi-task and meta reinforcement learning.” In Conference on Robot Learning, Virtual, November 2020b. 26

Universal robotic arm controller over 50 tasks 



A vector optimization problem

“ min 
𝑥,𝑦

”  𝐹 𝑥, 𝑦 = [𝑓1 𝑥, 𝑦1 , … , 𝑓𝑡 𝑥, 𝑦𝑡 , … , 𝑓𝑇 𝑥, 𝑦𝑇 ]

1
0
1

≤
1
1
1

?
2
0
0

≤
1
1
1

?

What is multi-objective optimization?

27

▪ Difficulty: How to optimize or even compare a vector? (see part 3)

▪ Merits: potentially capture all preferences/tradeoffs among objectives
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Relation with other popular frameworks

More general and

flexible models!
“ min 

𝑥,𝑦
”  𝐹 𝑥, 𝑦 = [𝑓1 𝑥, 𝑦 , … , 𝑓2 𝑥, 𝑦 ]

𝐹1

𝐹2

Hypothesis ℋ

Pareto front

▪ Multi-objective versus functional constrained optimization

fairness accuracy



History of multi-objective optimization

1880s – 1900s

Lexicographicstatic weighted sum

1970s – present 1980s – present 2010s – present

MGDA

Application to AI/ML

Uncertainty-based

Training

Testing

Generalization

Model complexity

Errors

29



Recent surge of interests

30

Google Scholar under keyword “multi-objective optimization”



Rationale for this tutorial

▪ Part II: Recent advances in bilevel optimization foundations 

▪ Part III: A representative application to reinforcement learning

Classic theory and algorithm Emerging AI applications

▪ Part IV: Recent advances in multi-objective learning foundations 
31
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Two general recipes for bilevel optimization

Nested optimization

first over y and then over x

Constrained optimization

jointly over x and y

Difficulty of solving lower-level y-problems
34



Overview of methods covered in this tutorial

Implicit gradient

Nested optimization Constrained optimization

Difficulty of lower-level y-problems

Explicit gradient
(Algorithm unrolling)

Penalty methodOptimality condition

35



Nested optimization

Solve simple bilevel optimization via implicit gradients

36

Upper-level variable 

Lower-level variable 

Start from the simple setting: no constraints, unique lower-level solution 



Implicit gradient: Gradient of the lower-level solution w.r.t. upper-level variable

The upper-level gradient w.r.t. x is 

What is the key challenge? Finding implicit gradients

37

Unconstrained +

strong convexity



Approximate upper-level implicit gradients 

Saeed Ghadimi and Mengdi Wang. ``Approximation methods for bilevel programming,” arXiv preprint:1802.02246, 2018.

Approximate                     and introduce a slightly biased implicit gradient  

Approximate the Hessian inversion by (                       ) 

Neumann series

Key challenges: evaluating upper-level gradients is costly

38



ALSET: A unified aLternating Stochastic gradiEnt descenT

▪Reduce to stochastic gradient descent ascent methods [Jin-Netrapalli-Jordan 2019]  

The generic template: Alternating implicit SGD

39

For k = 0, 1, 2, …, K do 

S1) 

S2)



Figure: contour map of

Challenge: Gradient bias depends on the drift of lower-level solutions

Error induced from inexact lower-level variables

40

ALSET: Use inexact lower-level solution to calculate implicit gradient 



▪ Two-timescale: Update x in a slower timescale than y; e.g., TTSA [Hong et al, 20]

Two early attempts to this problem

41

▪ Double-loop: Update y with growing # of iters; BSA [Ghadimi et al, 18], StocBio [Ji et al, 21]

Ghadimi and Wang. ``Approximation methods for bilevel programming,” arXiv preprint:1802.02246, 2018.

Hong, Wai, Wang, and Yang, “A two-timescale framework for bilevel optimization: Complexity analysis and application to actor-critic.” SIAM J OPT 2023

Ji, Yang, and Liang, “Bilevel optimization: Convergence analysis and enhanced design.” ICML 2021



Q: Something not uncovered by these analysis?

Existing two-timescale/double-loop analysis does not capture this …

…

42

Demystify alternating SGD for bilevel problems

A1: Update of x uses decaying stepsizes      to cancel noise; it is slow!

A2: The lower-level solution is highly smooth; its drift is small!



Solving (a class of) bilevel problems with SGD convergence rate!

Chen, Sun, and Yin, ``Closing the Gap: Tighter Analysis of Alternating Stochastic Gradient Methods for Bilevel Problems” NeurIPS 2021

Under the above assumption, if we choose stepsizes                and , 

without inner loop and increasing batchsize, ALSET satisfies

Theorem (Convergence)

Upper level 

Lower level 

SGD-like guarantee for certain bilevel problems

43

A1) upper objective f(𝑥, 𝑦) and its gradient are Lipschitz continuous

A2) lower objective g(𝑥, 𝑦) is strongly convex and smooth in y

A3) stochastic 1st- and 2nd-order information are unbiased w/ bounded variance  



Do not be afraid of solving certain bilevel problems!

Sample complexity to achieve an 𝜖-stationary point of 𝐹 𝑥 ; i.e., 𝔼[ ∇𝐹 𝑥 2] ≤ 𝜖.

44

SGD-like guarantee for certain nested problems



Empirical benefits in meta learning

45

▪ Bilevel SGD-based ALSET versus standard MAML and other bilevel baselines

▪ Meta learning for multiple sinusoidal regression tasks

Chen, Sun, Yin, “Solving stochastic compositional optimization is nearly as easy as solving stochastic optimization,” IEEE TSP, 2021



Other recent implicit gradient methods not covered

▪ Acceleration methods for implicit gradient methods

[Khanduri et al., 2021], [Yang et al., 2021], [Shen and Chen, 2022], [Li et al., 2022], [Ji et al., 2022],

[Huang et al., 2022], [Dagréou et al., 2022], [Chen et al., 2023], [Khanduri et al., 2023], etc 

Khanduri, Zeng, Hong, Wai, Wang, & Yang, “A near-optimal algorithm for stochastic bilevel optimization via double-momentum,” Proc. NeurIPS 2021

SUSTAIN: add momentum in upper- and lower-level updates

SUSTAIN achieves iteration complexity which is near-optimal

For k = 0, 1, 2, …, K do 

S1) 

S2)

Yang, Ji, and Liang, "Provably faster algorithms for bilevel optimization,"  Proc. NeurIPS 2021 46



Overview of methods covered in this tutorial

Nested optimization Constrained optimization

Difficulty of lower-level y-problems

Implicit gradient
Explicit gradient

(Algorithm unrolling)

Work as SGD when implicit function is smooth, but what if it is not?

47
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How to apply bilevel to more challenging settings?

Extend to … 

Non-strongly convex lower-level problems



Difficulty of lower-level y-problems

Overview of methods covered in this tutorial

Implicit gradient

Limited applicability;

Great when it works

Nested optimization Constrained optimization

Penalty methodOptimality conditionExplicit gradient

Simple to program;

Use approximations

49



Challenges due to non-convexity

Non-unique solutions

Non-differentiable upper-level loss; non-invertible Hessian

Constrained reformulation

50



Main assumption: Polyak-Łojasiewicz (PL) condition

Image from [Liu, 2022]

Loss of over-parametrized model is non-convex

All stationary points are global optimal solutions…

Liu, Zhu, and Belkin, ``Loss landscapes and optimization in over-parameterized non-linear systems and neural networks” Applied and Computational Harmonic Analysis

but satisfies the PL-inequality:

51

https://openreview.net/pdf?id=Du06rWqW8za


Constrained reformulation

Xiao, Lu, Chen, “A Generalized Alternating Method for Bilevel Optimization under the Polyak-Łojasiewisz Condition,” NeurIPS 2023

Constraint qualification (CQ) conditions: 

Ensure KKT conditions are necessary optimality conditions. 

𝑠. 𝑡.  equivalent condition of LL optimality

KKT conditions

52



Constrained reformulation

Xiao, Lu, Chen, “A Generalized Alternating Method for Bilevel Optimzation under the Polyak-Łojasiewisz Condition,” NeurIPS 2023

Value-function based

Gradient based KKT conditions hold at global optimal set!

Gradient based

53



—— Identify the CQ satisfied by PL bilevel problems

Can we formally justify this phenomenon?

54



Calmness condition

▪ Quantifies the sensitivity of the objective to the perturbation on constraints.

Xiao, Lu, Chen, “A Generalized Alternating Method for Bilevel Optimization under the Polyak-Łojasiewisz Condition,” NeurIPS 2023

Let              be the global optimal point of

                                                                                 .

If there exists ɛ and M s.t.  for any              and                                       

which satisfies                              , one has                                                                       

then the problem is said to be calm. 

▪ Key observation: gradient based PL bilevel problems inherit the calmness CQ! 

Definition (Calmness CQ)

55



If 𝑔(𝑥,∙) satisfies the PL condition and is smooth, and 𝑓 𝑥,∙  is Lipschitz continuous, 

then there exists 𝑤∗ ≠ 0 such that 

hold at the global minimizer 𝑥∗, 𝑦∗  of the PL bilevel problem. 

New necessary condition

Xiao, Lu, Chen, “A Generalized Alternating Method for Bilevel Optimization under the Polyak-Łojasiewisz Condition,” NeurIPS 2023

Theorem (Necessary condition of KKT)

56

▪ Compare with KKT: Shadow implicit gradient:  



A generalized alternating gradient method

Using fixed-point equation and the alternating strategy:

Xiao, Lu, Chen, “A Generalized Alternating Method for Bilevel Optimization under the Polyak-Łojasiewisz Condition,” NeurIPS 2023. 

For k = 0, 1, 2, …, K do 

S1) 

S2)

S3)

GALET : Generalized ALternating mEthod for bilevel opTimization

57



GALET enjoys the same convergence rate as GD!

Convergence results: GD-like guarantee

58Xiao, Lu, Chen, “A Generalized Alternating Method for Bilevel Optimization under the Polyak-Łojasiewisz Condition,” NeurIPS 2023. 

Under the above assumptions, if we choose stepsizes properly, the iterates generated by 

the GALET satisfies

Upper-level Lower-level 

Shadow implicit gradient level

Theorem (Convergence)

A1) upper objective f(𝑥, 𝑦) and its gradient are Lipschitz continuous

A2) lower objective g(𝑥, 𝑦) is PL , smooth and Hessian-Lipschitz in y

A3) The nonzero eigenvalue of the Hessian of g(𝑥, 𝑦) is bounded away from 0



Overview of methods covered in this tutorial

Nested optimization Constrained optimization

Difficulty of solving lower-level y-problems

Penalty methodImplicit gradient

Limited applicability;

Great when it works

Optimality conditionExplicit gradient

59



Penalty-based reformulations

Under the PL condition, both of the following functions are optimality metrics.

with

Constrained reformulation

60



Constrained versus penalized reformulations

Equivalence?

Consider a slightly relaxed version of bilevel problem:

Equivalence: all local and global solutions match…
Image from depositphotos.com

61



Difficulty in preserving local solutions

Solution is 0

Local solution 
𝟐𝝅

𝟑

Shen, Xiao and Chen, “On Penalty-based Bilevel Gradient Descent Method,” ICML 2023

Penalize with gradient norm

62



Conditions of preserving local solutions

Shen, Xiao and Chen, “On Penalty-based Bilevel Gradient Descent Method,” ICML 2023

Equivalence?

Given any 𝜖 > 0, choose the penalty constant 𝛾 ≳ 𝜖−0.5. 

Then any local solution of the penalized problem            is a local 

solution of the 𝜖-approximate original bilevel problem         .

Theorem (equivalence)

i) For   , no further assumption is needed;

ii) For   , further assume the singular values >0;

Image from depositphotos.com

63



For k = 0, 1, 2, …, K do 

S1) 

S2)

An alternative method: Penalty-based gradient descent

▪ One only needs first-order derivatives!

Gradient of value function is computed by a generalized Daskin's theorem:

64



Training efficiency for nonconvex bilevel problems

Shen, Xiao and Chen, “On Penalty-based Bilevel Gradient Descent Method,” ICML 2023

Theorem (convergence)

Consider running V-PBGD for                           .  With small 

enough step sizes and                    , it holds that

▪ With 𝛾 ≳ 𝜖−0.5, it implies the iteration complexity

65



Overview of methods covered in this tutorial

Implicit gradient

Limited applicability;

Great when it works

Nested optimization Constrained optimization

Difficulty of lower-level y-problems

Explicit gradient

Simple to program;

Incur approximations

Broad applicability;

Often require relaxations

Penalty method

Limited applicability;

Great when it works

Optimality condition

66



Other recent advances not covered

▪ Acceleration methods for implicit gradient methods

▪ Memory-efficient variants for algorithm unrolling methods

▪ Penalty and primal-dual methods for bilevel optimization 

[Khanduri et al., 2021], [Yang et al., 2021], [Shen and Chen, 2022], [Li et al., 2022], [Ji et al., 2022],

[Huang et al., 2022], [Dagréou et al., 2022], [Chen et al., 2023], [Khanduri et al., 2023], etc 

[Maclaurin et al., 2015], [Pedregosa 2016], [Franceschi et al., 2017, 2018], [Nichol et al., 2018], 

[Shaban et al., 2019], [Grazzi et al., 2020], [Liu et al., 2021], [Liu et al., 2022], [Bolte et al., 2022]

[Ye et al., 1997], [Lin et al., 2014], [Liu et al., 2021], [Mehra and Hamm, 2021], [Sow et al., 2022], 

[Gao et al., 2022], [Ye et al., 2022], [Lu and Mei 2023], [Huang 2023], [Kwon et al., 2023], etc

67



Simulation: Data hyper-cleaning

In data hyper-cleaning, we try to clean up the polluted training data

has polluted data is clean

Want to learn an importance weight for each data

Given weights, the models fit the weighted data

68



Simulation: Data hyper-cleaning

We evaluate all algorithms with three main metrics:

• Test accuracy: classification accuracy of y

• F1 score: precision and recall of cleaner x

• Scalability: Peak GPU memory usage through training and inference

We want such models to fit well with clean data:

69



Simulation: Data hyper-cleaning

Nested 

optimization

Constrained  

optimization

• V-PBGD does not have as large memory increase, thanks to being first-order

70
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Empirical successes of reinforcement learning

Image from Internet

AlphaGo Rubik’s cube

Finetune LLMsComputer games



Data Model Prediction

Collect data, train model, and make predictions with the model 

Supervised learning



Feedback loop

collect 

feedback data

Reinforcement learning

Data Model Prediction

Exploration
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Single-agent reinforcement learning

Single-agent RL: One agent takes an action 𝑎ℎ at each step ℎ

• Environment state 𝑠ℎ+1 evolves according to agent’s action 𝑎ℎ

• Goal: maximize the cumulative rewards 

• Solution concept: optimal policy 𝜋∗ – reward maximizing policy
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Multi-agent reinforcement learning

Multi-agent RL: Multiple agents, each takes an action at each step

• Environment state evolves according to actions of all agents

• Multi-objective optimization: 

• each agent aims to maximize her own cumulative rewards

• Game-theoretic solution concepts: 

• Markov perfect equilibria, Coarse correlated equilibria, … 
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Bilevel optimization meets reinforcement learning

Upper-level variable

Lower-level variable 

Bilevel RL: Multi-agent RL + leader-follower structure

Leader’s problem

Follower’s problem

Leader and follower have different reward functions

𝑓(𝑥, 𝑦) and g(𝑥, 𝑦) are cumulative rewards of leader and follower

Hierarchical structure – follower’s problem as leader’s constraint



Nested in

RL problem with parameter 𝒙

data model policy 𝜋𝑦

feedback 𝑟𝑥

Interpretation of bilevel RL

RL problem with policy 𝒙

Policy 𝑥

79
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Interpretation of bilevel RL

• Leader announces a policy 𝑥, promise she will play 𝑥  

• Follower decides his policy 𝑦 – best-response to 𝑥

• Leader and follower then play (𝑥, 𝑦) simultaneuously

• A sequence of state-action-rewards are generated

• Leader and follower receive 𝑓(𝑥, 𝑦) and g(𝑥, 𝑦) in total

Announce 𝑥

Choose y = S(𝑥)

Upper: Find leader’s
optimal policy

Lower: follower always
adopts best response
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Interpretation of bilevel RL

Upper: Find leader’s
optimal policy

Lower: follower always
adopts best response

𝑥∗ is leader’s optimal policy given that follower responds optimally

Announce 𝑥

Choose y = S(𝑥)

Follower’s best response:

Leader’s optimization:

Optimal solution pair:
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A more general view of bilevel RL

More generally, we can have multiple leaders n and followers (m)

Leaders announce their policies and promise to commit to them

Followers form an equilibrium induced by leaders’ policies

Each leader’s goal: steer the system in her favor (game of leaders)

Upper-level variable

Lower-level variable 
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Example: Stackelberg game

Upper: Find leader’s
optimal policy

Lower: follower always
adopts best response

Follower labels leader’s 𝑥 using a
deterministic function

von Stackelberg, H. (1952). The theory of the market economy. Oxford University Press.
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Example: Stackelberg game with quantal response

Upper: Find leader’s
optimal policy

Lower: follower always
adopts best response

Stochastic response

McKelvey, Richard D., and Thomas R. Palfrey. "Quantal response equilibria for normal form games." Games and economic behavior 10, no. 1 (1995): 6-38.

Černý, Jakub, Viliam Lisý, Branislav Bošanský, and Bo An. “Computing quantal stackelberg equilibrium in extensive-form games.” AAAI 2021
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Example: contract design

Upper: Find leader’s
optimal contract

Lower: follower always
adopts best response

Follower takes action 𝑏 which generates an outcome 𝑜 ~ 𝑝𝑏

Each action 𝑏 requires some effort and thus incurs a cost 𝑐(𝑏)

Leader incentivizes follower with an outcome-dependent payment 𝑆(𝑜)

Special case of Stackelberg game with structured rewards

Laffont, Jean-Jacques, and David Martimort. "The theory of incentives: the principal-agent model." In The theory of incentives. Princeton university press, 2009.

Ho, Chien-Ju, Aleksandrs Slivkins, and Jennifer Wortman Vaughan. “Adaptive contract design for crowdsourcing markets: Bandit algorithms for repeated 

principal-agent problems.” EC 2014
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Example: performative prediction

Upper: Find leader’s
optimal decision

Lower: sample 𝑧 ~𝒟(𝑥) 

Perdomo, Juan, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. “Performative prediction.” ICML 2020

Drusvyatskiy, Dmitriy, and Lin Xiao. "Stochastic optimization with decision-dependent distributions." Mathematics of Operations Research 2023

Miller, John P., Juan C. Perdomo, and Tijana Zrnic. “Outside the echo chamber: Optimizing the performative risk.” ICML 2021
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Example: multi-agent performative game

Upper: Find leader’s
equilibrium policy

Lower: sample 𝑧 ~𝒟(𝑥) 

Narang, Adhyyan, Evan Faulkner, Dmitriy Drusvyatskiy, Maryam Fazel, and Lillian J. Ratliff. “Multiplayer performative prediction: Learning in decision-

dependent games.” JMLR 2023

Piliouras, Georgios, and Fang-Yi Yu. “Multi-agent performative prediction: From global stability and optimality to chaos.” EC 2023



1. Collect bunch of trajectory pairs with policy

2. Humans label the preferred one; Reward 

predictor predicts the trajectory label 

3. Train reward predictor with MLE loss given 

human labels (Bradley-Terry model)

4. Train policy to increase the predicted reward 

Upper level
(reward learning)

Lower level
(policy learning)

Policy Model

Environment

observation

action

observation

action

observationaction

Human Preference 
     Annotation

Reward Model

Preference
     data

reward

Example: RL with human feedbacks

88
Ouyang, Long, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang et al. “Training language models to follow instructions 

with human feedback.” Neurips 2022.



23

Example: RLHF / reward design / inverse RL

Upper: Find leader’s
optimal reward param. 

Lower: follower always
adopts optimal policy

Leader chooses a reward 𝑟𝑥       Follower chooses a policy 𝜋𝑦

Leader’s goal: find a reward 𝑟∗ such that 

Trajectory 𝜏 generated by 𝜋∗ explains observed data

Often 𝜋𝑦 does not enter 𝑓 or 𝑔 directly, rather indirectly through 𝜏



Upper-level variable

Lower-level variable 

Upper: Find leader’s
optimal policy

Lower: follower always
adopts best response

Agenda: Recent optimization and learning results

Optimization: When model is known, how to compute 𝑥∗ and 𝑆 𝑥∗ ? 

Learning (Statistics):  How to learn 𝑥∗, 𝑆 𝑥∗  from data efficiently? What data?  How 

many data points needed? 

90



Optimization in bilevel RL – main takeaways

• Lower problem is convex optimization (𝑦 is not a policy), rather easy to solve using 

standard optimization tools 

• Lower problem is RL (𝑦 is a policy 𝜋𝑦), need to modify bilevel optimization tools 

(e.g., penalty method)

91



Lower problem is not RL – Stackelberg matrix game

92
Conitzer, Vincent, and Tuomas Sandholm. "Computing the optimal strategy to commit to." In ACM conference on Electronic commerce, pp. 82-90. 2006.



Quantal Stackelberg matrix game

93



Closed-from of 𝐒 𝒙  + policy gradient

94

Drusvyatskiy, Dmitriy, and Lin Xiao. "Stochastic optimization with decision-dependent distributions." Mathematics of Operations Research 2023

Miller, John P., Juan C. Perdomo, and Tijana Zrnic. “Outside the echo chamber: Optimizing the performative risk.” ICML 2021



Lower problem is RL – reward design

Challenge of RL: optimal policy nonunique
Lower problem not convex

Typically lower-level function is strongly convex so that

Given by Implicit function theorem

Difficult to apply existing bilevel optimization algorithms directly
95



Ensure unique lower-level solution – regularization

96



What penalty function?

How is regularized problem related to

original problem? 97

Recall: two general recipes for bilevel optimization

Nested optimization

first over y and then over x

Constrained optimization

jointly over x and y

Penalty methodImplicit gradient

How to compute

implicit gradient?



Implicit gradient for bilevel RL

Assume leader’s objective depends on 𝑥 and 𝜋𝑦 via a bivariate function 𝑈

Apply policy gradient theorem to

Second term contains implicit gradient (apply chain rule):

Implicit gradient

98

Chakraborty, Souradip, Amrit Singh Bedi, Alec Koppel, Dinesh Manocha, Huazheng Wang, Furong Huang, and Mengdi Wang. "Aligning agent policy with 

externalities: Reward design via bilevel rl." arXiv preprint arXiv:2308.02585 (2023).



Compute implicit gradient by differentiate lower level

Apply policy gradient theorem to

Second term contains implicit gradient (apply chain rule):

How to compute ∇𝑥𝑆 𝑥 ? Again, differentiate lower level optimality condition:

99

Chakraborty, Souradip, Amrit Singh Bedi, Alec Koppel, Dinesh Manocha, Huazheng Wang, Furong Huang, and Mengdi Wang. "Aligning agent policy with 

externalities: Reward design via bilevel rl." arXiv preprint arXiv:2308.02585 (2023).



Implicit gradient formula

Apply policy gradient theorem to

Second term contains implicit gradient (apply chain rule):

Implicit gradient formula:

Note: require policy Hessian ∇𝑦𝑦
2 𝑔(𝑥, 𝑦)

100

Chakraborty, Souradip, Amrit Singh Bedi, Alec Koppel, Dinesh Manocha, Huazheng Wang, Furong Huang, and Mengdi Wang. "Aligning agent policy with 

externalities: Reward design via bilevel rl." arXiv preprint arXiv:2308.02585 (2023).



Recall: penalty method for bilevel optimization

101



Penalty function I – value penalty

Theorem (solution relation)

102

Shen, Han, Zhuoran Yang, and Tianyi Chen. "Principled Penalty-based Methods for Bilevel Reinforcement Learning and RLHF." arXiv preprint 

arXiv:2402.06886 (2024).



Gradient of 𝒑(𝒙, 𝒚)

Penalty function I – value penalty

103



Penalty function 2 – Bellman penalty

Theorem (solution relation)

104



Penalty function 2 – Bellman penalty

Gradient of 𝒑(𝒙, 𝒚)

105



Implement penalty method for bilevel RL
PBRL algorithm

Zhan, Wenhao, et al. "Policy mirror descent for regularized reinforcement learning: A generalized framework with linear convergence." SIAM 

Journal on Optimization, 2023.



The Arcade learning environment is commonly used to test RL algorithms

• Goal: finish the games with high score

• Input: sequence of images

• Output: actions to play

The OpenAI gymnasium library includes 59 games

Numerical experiments: RLHF on Atari games

107



We implement

• Baseline: original RLHF algorithm (DRLHF)

• Ours: PBRL algorithm

• Oracle: A2C with access to the ground truth reward

We follow the original RLHF paper and use the game score 
as the ground truth reward and generate human feedback

Policy Model

Environment

observation

action

observation

action

observationaction

Human Preference 
     Annotation

Reward Model

Preference
     data

reward

Numerical experiments: RLHF on Atari games

108



Numerical experiments: RLHF on Atari games

109



Online learning in bilevel RL – setting

Policy 𝑥𝑘

Omniscient follower – always play 𝑦𝑘 = 𝑆(𝑥𝑘)  

Feedback data: Leader’s observations 

110

Zhao, Geng, Banghua Zhu, Jiantao Jiao, and Michael Jordan. "Online learning in stackelberg games with an omniscient follower." ICML 2023



Online learning in Stackelberg game

111



Toy example: online learning in Stackelberg game

112Bai, Yu, Chi Jin, Huan Wang, and Caiming Xiong. "Sample-efficient learning of Stackelberg equilibria in general-sum games." NeurIPS 2021



Method I – forget about estimating 𝑺(𝒙) 

Theorem (Zhu et al)

113

Zhu, Banghua, Stephen Bates, Zhuoran Yang, Yixin Wang, Jiantao Jiao, and Michael I. Jordan. "The sample complexity of online contract design." arXiv 

preprint arXiv:2211.05732 (2022).



Method II – estimate 𝑺 𝒙  via quantal response

Theorem

×

×

×

×

×

×
××
×× ××

×

×

×

×

×

×

×

×

××××

×

×
×
×

××

×

×

×

×
×

114

Chen, Siyu, Mengdi Wang, and Zhuoran Yang. "Actions Speak What You Want: Provably Sample-Efficient Reinforcement Learning of the Quantal Stackelberg 

Equilibrium from Strategic Feedbacks." arXiv preprint arXiv:2307.14085 (2023).
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Summary

▪ Bilevel RL – Leader-follower structure + RL

▪ Examples – Stackelberg game, RLHF / reward design

▪ Optimization aspect of bilevel RL

▪ Implicit gradient 

▪ Penalty method 

▪ Learning aspect of bilevel RL 

▪ UCB + discretization

▪ Quantal response + MLE + UCB
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Outline

❑ Part I - Introduction and background

❑ Part II – Bilevel optimization fundamentals

❑ Part III – Bilevel applications to reinforcement learning

❑ Part IV – Multi-objective learning beyond bilevel optimization (65 mins)

❑ Part V - Conclusions and open directions



Tutorial Part IV:

Multi-objective Learning Beyond Bilevel

Lisha Chen

Rensselaer Polytechnic Institute

February 20, 2024
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Outline

▪ Introduction and motivation

▪ Motivation

▪ Solution concepts and measures of optimality

▪ Multi-gradient based methods

▪ (deterministic) MGDA, CAGrad, other methods

▪ (stochastic) SMG, MoCo, MoDo

▪ Theory of multi-objective learning

▪ Optimization

▪ Generalization

▪ Application of multi-objective learning



Success of AI in the new era

119



120

Tasks, data, metrics

all can be modeled as an objective…

min
𝜃

loss (model θ, trainig data, metric, tasks)
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Tackling multiple tasks, data, metrics

via single-objective learning …

min
𝜃

loss (model , )

min
𝜃

loss (model , )

min
𝜃

loss (model , )

+

+

Simple but may cause… unit mismatch or competition



Limitations of the weighted sum method

122

▪ Hard to pre-define the weights when the scale of the objectives 

are unknown

▪ Some optimal solutions cannot be reached by optimizing the 

weighted sum objective

▪ Optimization conflicts: some objectives may not be optimized, or 

even degraded



Weighted sum cannot obtain some solutions

123

Example:

Pareto front

Cannot find points in the 

middle of the Pareto front even 

if change different weights

Debabrata Mahapatra, Vaibhav Rajan ``Multi-Task Learning with User Preferences: Gradient Descent with Controlled 

Ascent in Pareto Optimization’’ Proc. ICML 2020

Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qingfu Zhang, Sam Kwong ``Pareto Multi-Task Learning,’’ Proc. NeurIPS, 2019.
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Example:

Yuzheng Hu, Ruicheng Xian, Qilong Wu, Qiuling Fan, Lang Yin, Han Zhao, ``Revisiting scalarization in multi-task 

learning: A theoretical perspective,’’ Proc. NeurIPS, 2023.

Weighted sum cannot obtain some solutions



Limitations of the weighted sum method

125

▪ Hard to pre-define the weights when the scale of the objectives 

are unknown

▪ Some optimal solutions cannot be reached by optimizing the 

weighted sum objective

▪ Optimization conflicts: some objectives may not be optimized, or 

even degraded



Optimization conflicts

126

Loss landscape of ℓ1 Loss landscape of ℓ2

Gradient of ℓ1 Gradient of ℓ2

> 90∘

𝜃

Optimization conflicts



Examples of optimization conflicts in large language models

A. Wei, N. Haghtalab, J. Steinhardt, "Jailbroken: How Does LLM Safety Training Fail?” NeurIPS 2023 127

Cannot be solved by merely increasing the 

model scale or finetuning! [Wei et al. ‘23]

Need to rethink LLM training 

with safety objective!

Accuracy objective dominates!



Examples of optimization conflicts in multi-modal learning

Modality competition

Y. Huang, J. Lin, C. Zhou, H. Yang, L. Huang ``Modality competition: What makes joint training of multi-modal network fail in deep 

learning?(provably),’’ Proc. ICML 2022. 128

Modality 1 Modality 2

Results in suboptimal training errors, 

thus some modalities are unexplored.



Formulation for multi-objective learning

129

A vector optimization problem

min 
𝜃

 𝐿𝑆 𝜃 = [ℓ1 𝜃, 𝑆 , … , ℓ𝑡 𝜃, 𝑆 , … , ℓ𝑇 𝜃, 𝑆 ]

How to optimize a vector?

1
0
1

≤
1
1
1

?
2
0
0

≤
1
1
1

?



Partial ordering

A binary relation ≤ defined in a real linear space 𝑅𝑇  that 

satisfies the following axioms (for arbitrary 𝑤, 𝑥, 𝑦, 𝑧 ∈ 𝑅𝑇):

▪ Reflexive: 𝑥 ≤ 𝑥;  

▪ Transitive: 𝑥 ≤ 𝑦, 𝑦 ≤ 𝑧 ⇒ 𝑥 ≤ 𝑧;

▪ 𝑥 ≤ 𝑦, 𝑤 ≤ 𝑧 ⇒ 𝑥 + 𝑤 ≤ 𝑦 + 𝑧;

▪ 𝑥 ≤ 𝑦, 𝛼 ∈ 𝑅+  ⇒ 𝛼𝑥 ≤ 𝛼𝑦;

130



Lexicographical ordering

On 𝑅𝑇, a lexicographic order ≤𝑙𝑒𝑥 is defined in the 

following manner. Let 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑇
⊤ and 𝑦 =

𝑦1, 𝑦2, … , 𝑦𝑇
⊤ be in 𝑅𝑇. 

Then 𝑥 ≤𝑙𝑒𝑥 𝑦 if

(a) 𝑥 = 𝑦 or

(b) if 𝑥 ≠ 𝑦 and 𝑡0 = min {𝑡:  𝑥𝑡 ≠ 𝑦𝑡}, then 𝑥𝑡0
< 𝑦𝑡0

.

The order depends on the order of the first element that differs.

131



Multi-level optimization induced by lexicographical ordering

A simple bilevel optimization problem with one variable 𝜃 

and when 𝑇 = 2 

A simple multi-level optimization problem with one variable 𝜃

132



Epsilon-constraint methods

133

ℓ1

ℓ2

Pareto front

𝜖1

Idea: optimize one objective conditioned on that the 

rest objectives are within pre-defined thresholds

Can find different points on the Pareto front 
corresponding to different trade-offs/preferences



Natural ordering

134/21

A component-wise partial ordering, denoted as ≤𝐶

Natural ordering cone:



Pareto optimality induced by natural ordering

135

ℓ1

ℓ2

Hypothesis ℋ

Pareto 

front

Definition (Pareto optimal)

A point 𝜃∗ ∈ Θ is Pareto optimal iff there exists no 

other point 𝜃 ∈ Θ that 𝐿 𝜃 ≤𝐶 𝐿 𝜃∗ , and ℓ𝑡 𝜃 <
ℓ𝑡 𝜃∗  for at least one 𝑡 ∈ [𝑇].



Pareto optimality induced by natural ordering

136

ℓ1

ℓ2

Hypothesis ℋ

Pareto 

front

Definition (Pareto optimal)

A point 𝜃∗ ∈ Θ is Pareto optimal iff there exists no 

other point 𝜃 ∈ Θ that 𝐿 𝜃 ≤𝐶 𝐿 𝜃∗ , and ℓ𝑡 𝜃 <
ℓ𝑡 𝜃∗  for at least one 𝑡 ∈ [𝑇].

Definition (Pareto stationary) [Fliege et al’ 2020]

A point 𝜃∗ ∈ Θ is Pareto stationary iff min
𝜆∈Δ𝑇

 ||∇𝐿 𝜃 𝜆||2 = 0.

Equivalently, 𝜃∗ is Pareto stationary iff there exists no first-

order common descent directions for all objectives, i.e. 

range ∇𝐿 𝜃 ∩ −𝑅++
𝑇 = ∅

implies

−𝑅++
𝑇



Pareto optimality

137

How to find Pareto optimal/stationary models?

Use scalarization to convert the vector-valued 

objective to a scalar-valued objective.

ℓ1

ℓ2

Hypothesis ℋ

Pareto front



Challenge of conflicting gradient 

138

Optimization conflicts still exist!

Gradient of ℓ1 Gradient of ℓ2

𝜃

𝑤1ℓ1 𝜃 + 𝑤2ℓ2(𝜃)



Challenge of conflicting gradient 

139

Potentially hurt the convergence of the training error!

Static weighting

𝑤1ℓ1 𝜃 + 𝑤2ℓ2(𝜃)



Optimization conflicts – what and how

140

Common gradient descent 

to mitigate optimization conflictsOptimization conflicts

ℓ1 𝜃 ℓ2 𝜃

> 90∘

𝜃

Update direction that 

decrease all objectives

𝜃

∇ℓ1 𝜃 , ∇ℓ2 𝜃 < 0
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Outline

▪ Introduction and motivation

▪ Motivation

▪ Solution concepts and measures of optimality

▪ Multi-gradient based methods

▪ (deterministic) MGDA, CAGrad, other methods

▪ (stochastic) SMG, MoCo, MoDo

▪ Theory of multi-objective learning

▪ Optimization

▪ Generalization

▪ Application of multi-objective learning



Conflict-avoidant direction

142

Conflict-avoidant (CA) direction definition: [Fliege ’00, Désidéri ’12]

Jean-Antoine Désidéri, ``Multiple-gradient Descent Algorithm (MGDA) for Multi-objective Optimization’’. Comptes Rendus 

Mathematique, 350(5-6), 2012.

Worst descent 

amount

Jörg Fliege, Benar Fux Svaiter, `` Steepest descent methods for multicriteria optimization,’’ Mathematical methods of 
operations research, 2000



Conflict-avoidant direction

143

Conflict-avoidant (CA) direction definition:

Jean-Antoine Désidéri, ``Multiple-gradient Descent Algorithm (MGDA) for Multi-objective Optimization’’. Comptes Rendus 

Mathematique, 350(5-6), 2012.

Regularization term

Worst descent 

amount

Jörg Fliege, Benar Fux Svaiter, `` Steepest descent methods for multicriteria optimization,’’ Mathematical methods of 
operations research, 2000

[Fliege ’00, Désidéri ’12]



Conflict-avoidant direction

144

∇ℓ𝑆,1(𝜃)

∇ℓ𝑆,2(𝜃)

𝜆1
∗ 𝜃  ∇ℓ𝑆,1 𝜃 +  𝜆2

∗ 𝜃 ∇ℓ𝑆,2(𝜃)

Reformulation:

Multiple gradient descent (MGDA) or dynamic weighting algorithms

Idea: each update iteration follows the CA direction with a changing 𝜆

𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑑 𝜃𝑘



A variant of MGDA -  CAGrad

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, Qiang Liu, ``Conflict-Averse Gradient Descent for Multi-task Learning,’’ NeurIPS 2021
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𝑑 = −(𝑔0 + ∇𝐿𝑆 𝜃 𝜆∗(𝜃)) 

𝜆∗ 𝜃 = argmin𝜆∈Δ𝑇 ∇𝐿𝑆 𝜃 𝜆, 𝑔0 + 𝜙
1
2||∇𝐿𝑆 𝜃 𝜆||

𝑔0 =
1

𝑇
∇𝐿𝑆 𝜃 𝟏

∇ℓ𝑆,1 𝜃
∇ℓ𝑆,2 𝜃

𝜙 = 𝑐2||𝑔0||2

Reformulate as −𝑑

Idea: to find a steepest descent direction subject to the 

constraint that it is close to a prior direction −𝑔0 

𝑔0



Other methods for multi-task learning – PCGrad

146

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, Chelsea Finn, ``Gradient Surgery for Multi-Task 

Learning,’’ NeurIPS 2020

∇ℓ𝑆,1 𝜃

∇ℓ𝑆,2 𝜃

Idea: to find a combination of the directions that are projections 

onto the normal plane of their conflicting gradients

𝑑 = − 

𝑡

∇ℓ𝑆,𝑡 𝜃 𝑃𝐶

∇ℓ𝑆,𝑡 𝜃 𝑃𝐶 = ∇ℓ𝑆,𝑡 𝜃 −
∇ℓ𝑆,𝑡 𝜃 , ∇ℓ𝑆,𝑗 𝜃

||∇ℓ𝑆,𝑗 𝜃 ||2
⋅ ∇ℓ𝑆,𝑗 𝜃



Other methods for multi-task learning – Nash-MTL

∇ℓ𝑆,1 𝜃

∇ℓ𝑆,2 𝜃

𝑑(𝜃) = −∇𝐿𝑆 𝜃 𝜆∗(𝜃) 

∇𝐿𝑆 𝜃 ⊤∇𝐿𝑆 𝜃 𝜆∗ 𝜃 = 1/𝜆∗(𝜃)

147

Idea: to find a scale-invariant update direction 

Solve 𝜆∗(𝜃) that

Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, Ethan Fetaya, ``Multi-Task 

Learning as a Bargaining Game,’’ Proc. ICML 2022

Change the scale of 𝐿𝑆(𝜃) does not change 𝑑(𝜃)



Other methods not covered

148

GradNorm [Chen’ 18]

GradDrop [Chen’ 20]

IMTL [Liu’ 21]

Not an exhaustive list

▪ Gradient manipulation / dynamic weighting methods

▪ (Stochastic) MGDA-type methods

UW [Kendall’ 18]

RLW [Lin’ 22]

Nash-MTL [Navon’ 22]

CR-MOGM [Zhou’ 22]

SDMGrad [Xiao’ 23] 



Good news for MGDA in modern MOL

149

MGDA-type algorithms recently applied to multi-task learning



Sad news for MGDA in modern MOL?

150

Test performance not as good as static weighting…



MGDA not as expected in modern MOL?

151

MGDA
Static 

weighting



Two root causes of degraded performance

152

[Kurin et al. 22’]

▪ Optimization / computational

Vanilla stochastic MGDA may not converge 
to Pareto stationarity.



Two root causes of degraded performance

153

[Xin et al. 22’]

▪ Generalization / statistical

No guarantee that models learned by 

stochastic MGDA can generalize well.

[Kurin et al. 22’]

▪ Optimization / computational

Vanilla stochastic MGDA may not converge 
to Pareto stationarity.

Test error = optimization error + generalization error



Ideal CA direction

One challenge in stochastic MOL: Bias in updates

154

Suyun Liu, and Luis Nunes Vicente, ``The stochastic multi-gradient algorithm for multi-objective optimization and its application 

to supervised machine learning’’, Annals of Operations Research, 2021

∇ℓ𝑆,1(𝜃)

∇ℓ𝑆,2(𝜃)

𝑑

Actual stochastic update direction

∇ℓ𝑧,1(𝜃)

∇ℓ𝑧,2(𝜃)

𝑑

𝑧: a stochastic sample



One challenge in stochastic MOL: Bias in updates

155

Example with 2 objectives (𝑇 = 2) and exactly solving subproblems

solves



One challenge in stochastic MOL: Bias in updates

156

Example with 2 objectives (𝑇 = 2) and exactly solving subproblems

≠

𝑧: a stochastic sample

solves



One challenge in stochastic MOL: Bias in updates

157

Due to the intrinsic nonlinearity of the mapping from ∇𝐿𝑆(𝜃) to 𝑑(𝜃)

Bias in CA direction

Example with 2 objectives (𝑇 = 2) and solving stochastic subproblems

Bias in CA weight



for 𝑘 = 0, … , 𝐾 − 1 do

      Compute gradient ∇𝐿𝑧𝑘
(𝜃𝑘)

      Compute dynamic weight 𝜆𝑘+1 ∈ argmin
λ∈Δ𝑇

∇𝐿𝑧𝑘
𝜃𝑘 𝜆

2
 

      Update model parameter 𝜃𝑘+1 = 𝜃𝑘 − 𝛼∇𝐿𝑧𝑘
𝜃𝑘 𝜆𝑘+1

end for

A simple stochastic MOO algorithm - SMG

158

Mini-batch stochastic multi-objective gradient descent

Suyun Liu, Luis Nunes Vicente, ``The stochastic multi-gradient algorithm for multi-objective optimization and its application to 

supervised machine learning’’, Annals of Operations Research, 2021

Increasing the batch size [Liu et al ’ 21] 

Variance reduction mitigates the bias due to the continuity from the 

mapping of gradient ∇𝐿𝑆 𝜃  to the update direction 𝑑(𝜃)



Increasing batch size [Liu et al ’ 21] 

New problem: 

Inefficient, if not impossible!

159

A simple stochastic MOO algorithm - SMG



for 𝑘 = 0, … , 𝐾 − 1 do

      Compute gradient ∇𝐿𝑧𝑘
(𝜃𝑘)

      Compute moving average of the gradient 𝑌𝑘+1 = 𝑌𝑘 + ∇𝐿𝑧𝑘
(𝜃𝑘)

      Compute dynamic weight 𝜆𝑘+1 = ΠΔ𝑇(𝜆𝑘 − 𝛾𝑌𝑘
⊤𝑌𝑘𝜆𝑘)

      Update model parameter 𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑌𝑘+1𝜆𝑘+1

end for

A simple stochastic MOO algorithm - MoCo

160

MoCo: Multi-objective with gradient correction

Use momentum-based 

methods [Fernando et al ’ 23]

Heshan Fernando, Han Shen, Miao Liu, Subhajit Chaudhury, Keerthiram Murugesan, and Tianyi Chen. ``Mitigating gradient bias

in multi-objective learning: A provably convergent stochastic approach’’, Proc. ICLR 2023.

Variance reduction mitigates the bias due to the continuity from the 

mapping of gradient ∇𝐿𝑆 𝜃  to the update direction 𝑑(𝜃)



for 𝑘 = 0, … , 𝐾 − 1 do

      Compute gradient ∇𝐿𝑧𝑘
(𝜃𝑘)

      Compute moving average of the gradient 𝑌𝑘+1 = (1 − 𝛽𝑘)𝑌𝑘+𝛽𝑘∇𝐿𝑧𝑘
(𝜃𝑘)

      Compute dynamic weight 𝜆𝑘+1 = ΠΔ𝑇(𝜆𝑘 − 𝛾𝑌𝑘
⊤𝑌𝑘𝜆𝑘)

      Update model parameter 𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑌𝑘+1𝜆𝑘+1

end for

A simple stochastic MOO algorithm - MoCo
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MoCo: Multi-objective with gradient correction

Heshan Fernando, Han Shen, Miao Liu, Subhajit Chaudhury, Keerthiram Murugesan, and Tianyi Chen. ``Mitigating gradient bias

in multi-objective learning: A provably convergent stochastic approach’’, Proc. ICLR 2023.

Iterative update



for 𝑘 = 0, … , 𝐾 − 1 do

      Compute gradients ∇𝐿𝑧𝑘,1
(𝜃𝑘), ∇𝐿𝑧𝑘,2

(𝜃𝑘)

      Compute dynamic weight 𝜆𝑘+1 = ΠΔ𝑇(𝜆𝑘 − 𝛾∇𝐿𝑧𝑘,1
𝜃𝑘

⊤∇𝐿𝑧𝑘,2
𝜃𝑘 𝜆𝑘)

      Update model parameter 𝜃𝑘+1 = 𝜃𝑘 − 𝛼∇𝐿𝑧𝑘+1,1
𝜃𝑘 𝜆𝑘+1

end for

Iterative update

Iterative update of weight 𝜆 instead of exactly solving it 

A simple stochastic MOO algorithm - MoDo

162

Lisha Chen, Heshan Fernando, Yiming Ying, Tianyi Chen. ``Three-way trade-off in multi-objective learning: Optimization, 

generalization and conflict-avoidance,” Proc. NeurIPS, 2023.

MoDo: Multi-objective Double sampling optimization



for 𝑘 = 0, … , 𝐾 − 1 do

      Compute gradients ∇𝐿𝑧𝑘,1
(𝜃𝑘), ∇𝐿𝑧𝑘,2

(𝜃𝑘)

      Compute dynamic weight 𝜆𝑘+1 = ΠΔ𝑇(𝜆𝑘 − 𝛾∇𝐿𝑧𝑘,1
𝜃𝑘

⊤∇𝐿𝑧𝑘,2
𝜃𝑘 𝜆𝑘)

      Update model parameter 𝜃𝑘+1 = 𝜃𝑘 − 𝛼∇𝐿𝑧𝑘+1,1
𝜃𝑘 𝜆𝑘+1

end for

MoDo: Multi-objective Double sampling optimization

Double sampling

Double sampling mitigates the bias due to the sample independence

163

𝐸𝑍𝑘
∇𝐿𝑧𝑘,1

𝜃𝑘
⊤∇𝐿𝑧𝑘,2

𝜃𝑘 = ∇𝐿𝑆 𝜃𝑘
⊤∇𝐿𝑆 𝜃𝑘

Lisha Chen, Heshan Fernando, Yiming Ying, Tianyi Chen. ``Three-way trade-off in multi-objective learning: Optimization, 

generalization and conflict-avoidance,” NeurIPS, 2023.

A simple stochastic MOO algorithm - MoDo



Double sampling mitigates the bias due to the sample independence

A simple stochastic MOO algorithm - MoDo

164

𝐸𝑍𝑘
∇𝐿𝑧𝑘,1

𝜃𝑘
⊤∇𝐿𝑧𝑘,2

𝜃𝑘 = ∇𝐿𝑆 𝜃𝑘
⊤∇𝐿𝑆 𝜃𝑘

Mimics Deterministic 
algorithm with 

PGD update of 

𝜆𝑘

Stochastic 
MoDo 

algorithm

Lisha Chen, Heshan Fernando, Yiming Ying, Tianyi Chen. ``Three-way trade-off in multi-objective learning: Optimization, 

generalization and conflict-avoidance,” NeurIPS, 2023.
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Outline

▪ Introduction and motivation

▪ Motivation

▪ Solution concepts and measures of optimality

▪ Multi-gradient based methods

▪ (deterministic) MGDA, CAGrad, other methods

▪ (stochastic) SMG, MoCo, MoDo

▪ Theory of multi-objective learning

▪ Optimization

▪ Generalization

▪ Application of multi-objective learning



Ideal CA direction

Assess the ability to avoid conflicts

166

∇ℓ𝑆,1(𝜃)

∇ℓ𝑆,2(𝜃)

𝑑

MoDo direction

∇ℓ𝑧,1(𝜃)

∇ℓ𝑧,2(𝜃)

𝑑

How good is the approximate CA direction?



Measure of optimization conflict avoidance

167

We use two distances as measure of conflict avoidance (CA) ability.

Measure in terms of CA direction 𝑑𝜆 𝜃 = −∇𝐿𝑆 𝜃 𝜆



Measure of optimization conflict avoidance

168

Idea: 

Measure by the expected distance to the CA direction 𝑑𝜆(𝜃):

Distance to CA direction

Approximation error to the minimum 

descent amount across objectives
Measures CA ability



Definitions & assumptions

169

A1. Smoothness

A2. Strong convexity 

A3. Lipschitz continuity

▪ Standard assumptions in optimization and algorithm 

stability analysis

Assumptions

▪ Separately analyze general nonconvex (A1 & A3) and 

strongly convex (A1 & A2) settings



Conflict avoidance analysis

170

Under mild assumptions (A1 & A3, or A1 & A2), and proper choices of step 

sizes and batch sizes, the CA distance of SMG, MoCo, MoDo, MoCo+ 

converge to zero as number of iterations increases.

Theorem (CA ability guarantee, informal)

▪ Demonstrates the benefit of stochastic MGDA methods over 

static weighting in CA ability.



Optimization analysis

171

▪ Choosing proper step sizes, the convergence rates of  PS 

optimization errors of MoDo and MoCo match the convergence 

rate of SGD.

Under mild assumptions, the PS optimization error of SMG, MoCo, 

MoDo, MoCo+ converge to zero as number of iterations increases.

Theorem (PS optimization error guarantee, informal)

Convergence rates are summarized next.



Convergence rates

172

A new unified theoretical framework to analyze optimization and 

conflict avoidance with improved assumptions or convergence rates.

Lisha Chen, Heshan Fernando, Yiming Ying, Tianyi Chen. ``Three-way trade-off in multi-objective learning: Optimization, 

generalization and conflict-avoidance,” arXiv, 2023.



Beyond optimization challenges
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[Xin et al. 22’]

Even when the optimization error is small, the generalization 

error could be large, thus the test error is large.



Test risk decomposition

174

A measure of test risk tailored for MOL based on Pareto stationarity.

Pareto stationary (PS) test risk decomposition

Computational

Test error = optimization error + generalization error

Statistical



Generalization analysis

175

Theorem (Pareto generalization)

then the generalization errors of MoCo, MoDo satisfy

In the nonconvex case, if for any 𝑆 with 𝑆 = 𝑁, 

▪ A tight bound (matching lower bound) for nonconvex objective functions

Early stopping regime



Generalization analysis via algorithm stability

176

MOL uniform stability: bound output change 

after perturbing the training data by one sample

Definition (MOL uniform stability)

A randomized algorithm 𝐴 ∶  𝑍𝑁 →  𝑅𝑑, is MOL-uniformly stable with 𝜖, 

if for all neighboring datasets 𝑆, 𝑆′, we have

Sensitivity metric



A close look at algorithm stability

177

Definition (MOL uniform stability)

A randomized algorithm 𝐴 ∶  𝑍𝑁 →  𝑅𝑑, is MOL-uniformly stable with 𝜖, if 

for all neighboring datasets 𝑆, 𝑆′, we have

Sensitivity metric

✓0

✓1

✓2

✓3

✓k

Generated by dataset 𝑆

✓0

✓1

✓2
✓3

✓k

Generated by dataset 𝑆′ Generated by test data 𝑆′′

✓0

✓1

✓2
✓3

✓k?



Generalization analysis via algorithm stability

178

𝜖 ≤ (gradient norm bound) × P(perturbed sample is selected during training) 

≤ 𝐾/𝑁

MOL uniform stability: bound output change 

after perturbing the training data by one sample

In the general nonconvex case



Generalization analysis

179

Theorem (Pareto generalization w/ strong convexity)

In strongly convex case, with proper choice of step sizes, it holds

▪ Generalization error does not increase with 𝐾 if stepsize 𝛾 is small

▪ Matches the generalization error of single-objective learning

𝛾 = 𝑂(𝐾−1)

larger 𝛾



Why mitigating conflict may hurt test risk?

180

𝛾 = 𝑂(𝐾−1)

Larger 𝛾

𝛾 ↑, generalization error ↑

𝛾 ↑, CA ability ↑ (CA error ↓)

To control optimization error, we set 𝛾 = 𝑂(𝐾−
1

2)

In the strongly convex case

Generalization

Conflict avoidance



Why mitigating conflict may hurt test risk?

181

𝛾 = 𝑂(𝐾−1)

Larger 𝛾

✓0

✓1

✓2

✓3

✓k

Generated by a smaller 𝛾

✓0

✓1

✓2
✓3

✓k

Generated by a larger 𝛾

Stability Tracking CA direction



Comparison of the three errors for different methods

182

A new unified theoretical framework to analyze the three errors and 

theory-guided hyperparameter selection to balance among the three errors.

Lisha Chen, Heshan Fernando, Yiming Ying, Tianyi Chen. ``Three-way trade-off in multi-objective learning: Optimization, 

generalization and conflict-avoidance,” arXiv, 2023.



Take home message

183

A new algorithm that interpolates between static and dynamic weighting

with theory-guided hyperparameters to balance the trade-off!

A new unified theoretical framework to analyze the three errors.

Figure: Three-way trade-off among optimization, generalization, and conflict avoidance. 

↓: diminishing in an optimal rate w.r.t. 𝑁;     ↑ : growing w.r.t. 𝑁; 

: diminishing w.r.t. 𝑁, but not in an optimal rate.



Application to multi-domain image classification

Clipart 

Art

Product

Real-world

184
Lisha Chen, Heshan Fernando, Yiming Ying, Tianyi Chen. ``Three-way trade-off in multi-objective learning: Optimization, 

generalization and conflict-avoidance,” arXiv, 2023.

Office-home dataset

4 domains

65 classes/domain

70-100 images/class



Application to multi-domain image classification

Table: classification results on Office-home dataset.

185

Holistic performance metric

Lisha Chen, Heshan Fernando, Yiming Ying, Tianyi Chen. ``Three-way trade-off in multi-objective learning: Optimization, 

generalization and conflict-avoidance,” arXiv, 2023.



Application to scene understanding

186

Object segmentation

Depth regression

Surface normal 
estimation

Classification 

of pixel

Distance to 

camera

Direction of 

surface normal



Application to scene understanding

187

▪ MoDo with balanced tradeoff among three metrics

outperforms MGDA and static weighting

Table 4: Segmentation, depth, and surface normal estimation results on NYU-v2 dataset.



Application to speech processing

188

Speech Model Transcripts 

▪ Pre-training with unlabeled data.

▪ Downstream fine-tuning.   



Over 7000 languages Domain-specific jargon

Security and privacy of dataUniversal language translator

Multi-lingual, multitask with unified MOL

189



Shared parameters 𝜃

Finetuning CTC loss 1, 2, … 

Pretraining CPC loss

Combined loss

𝜙1 𝜙2 𝜙𝑀−1 𝜙𝑀

Joint pretraining & multi-lingual finetuning

190

𝐦𝐢𝐧𝜽,𝝓 [ℓ𝑪𝑷𝑪 𝜽 , ℓ𝑪𝑻𝑪 𝜽, 𝝓𝟏 , … , ℓ𝑪𝑻𝑪 𝜽, 𝝓𝑴 ]

…

Unlabeled Labeled
CPC: contrastive predictive coding loss

CTC: connectionist temporal classification loss



Metric: Word Error Rate (WER)

Results on benchmarks

▪ Insertion (I): #words incorrectly added

▪ Deletion (D): #words undetected

▪ Substitution (S): #words substituted

▪ (N): Total #words in the labeled transcript

191

Baselines:

▪ Wac2Vec2: a SOTA model

▪ FT: Supervised baseline without pretraining

▪ Two stage (PT+FT): 2-stage pretraining & finetuning (without joint MOL)

▪ Multi-objective (static): without optimization conflict avoidant update



Results on benchmarks

192



Conclusions
Metric 1

Metric 2

Metric 3

Metric 4

Metric 5Metric 6

min objective 1

s.t. min objective 2

Bi-/multi-level

min (obj 1, obj 2, obj 3)

Multi-objective

Theory foundation

193



Tianyi Chen Zhuoran Yang Lisha Chen

THANK YOU!

Multi-objective and multi-level optimization can flexibly model 

complex learning tasks and enable exciting applications in AI!

Take home
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